Climate change and human health: impacts, vulnerability, and mitigation

A Haines, R S Kovats, D Campbell-Lendrum, C Corvalan

Introduction

It has been known for thousands of years, at least since the time of Hippocrates, that climate has wide ranging impacts on health. Increasing recognition of the process of climate change has led to a growing interest by health researchers in assessing the potential mechanisms by which changes in climate could influence health (figure 1). Such health effects will be modulated by factors such as socioeconomic development and by the degree to which effective adaptation measures are implemented. Although most studies have assessed the potential impacts of climate change in isolation from other environmental changes, in reality climate change will be experienced against a background of other global changes—eg, population growth, urbanisation, land use changes, and depletion of fresh water resources—that themselves have implications for health and that could, in some instances, interact with climate change to magnify the impacts.

This article was the subject of the 2005 Harben Lecture of the Royal Institute of Public Health given by one of us (AH). It covers some of the ground of previous overviews but adds discussion of adaptation options and the potential use of “mitigation strategies”—eg, energy efficiency and renewable technologies—to contribute to near-term reductions in mortality.

There are several mechanisms by which climate can affect health. Extremes of temperature and rainfall—eg, heat waves, floods, and drought—have direct immediate effects on mortality as well as longer-term effects. For example, populations that have experienced flooding may suffer from sustained increases in common mental disorders. Climate change is also likely to affect biodiversity and the ecosystem goods and services that we rely on for human health. Changes in temperature and rainfall may also affect the distribution of disease vectors—eg, those of malaria and dengue—and the incidence of diarrhoeal diseases. Climate can affect levels of air pollutants—eg, tropospheric ozone pollution may be higher in some areas of Europe and lower in others—but the relations are still imperfectly understood. Sea level rise is likely to threaten low lying coastal populations, particularly in countries where economic conditions do not allow construction of sea defences and other counter measures. There are also concerns that flooding, drought, and environmental degradation associated with climate change may lead to population displacement and more environmental refugees.

Research on the health impacts of climate change addresses three main topics: current associations between climate and disease, the effect of recent changes in climate, and the evidence base for projecting the future impacts of climate change on health (figure 2). Temperatures have been increasing globally for the past two to three decades. The detection and attribution of health effects to these changes has become a key research challenge. This climate warming is projected to continue and accelerate, so that by the end of this century global mean temperature will have increased by 1·4–5·8°C. Effects at the upper end of the range are more difficult to predict and likely to be more seriously adverse.

Has observed climate change already been affecting human health?

A growing number of studies present evidence for the effects of observed climate change on vector-borne and other infectious diseases. Although the literature to date does not constitute strong evidence of an impact of climate change on human vector-borne diseases (eg, malaria), there is now evidence of vector species responding to recent climate change in Europe. There have been latitudinal shifts in ticks that carry tick-borne encephalitis in northern Europe, although alternative explanations—eg, changes in confounding factors like land use or in socioeconomic, demographic, and other environmental factors—remain plausible.
There is some evidence for changes in the frequency of weather extremes over recent decades. Many health outcomes are sensitive to isolated extreme events (e.g., heavy rainfall, high temperatures). Analyses of the 2003 heat wave in Europe have concluded that it was a truly extreme event and the summer of 2003 was probably the hottest in Europe since 1500. Climatologists now consider it “very likely” that human influence on the global climate has at least doubled the risk of a heat wave such as that experienced in 2003. Recent evidence has also emerged about a possible causal role of climate change (and specifically the warming of sea surface temperatures) in increasing the intensity of tropical cyclones, although a single event such as Hurricane Katrina, which caused major or catastrophic damage along the coastlines of Louisiana, Mississippi, and Alabama in 2005, cannot be definitely attributed to climate change.

Where health surveillance data are available for several decades up to the present day, it may be possible to determine whether any observed changes in disease might be related to changes in climate. Interpretation is complicated by potential competing explanations due to changes in important health determinants over time, as well as changes in the way in which diagnoses may be recorded. Empirical observation of the health consequences of recent climate change, followed by formulation, testing, and then modification of hypotheses would require long time-series (probably several decades) of careful monitoring. Although this process may accord with the principles of empirical science, it would not provide the timely information needed to inform current policy decisions on greenhouse gas emission abatement, so as to offset possible health consequences in the future. Nor would it allow early implementation of policies for adaptation to some level of climate change, which is now

Figure 1: Potential health effects of climate variability and change
Reproduced from reference 1, with permission from the American Medical Association.
inevitable owing to past greenhouse gas emissions. Therefore, the best estimation of the future health effects of climate change will necessarily come from risk assessment based on our current understanding of the effects of climate variation on health from observations made in the present and recent past, acknowledging the influence of a large range of modulating factors.

Observations of short-term variations in climate or weather show that even small temperature increases and precipitation changes can result in measurable impacts on malaria, diarrhoeal episodes, injuries related to floods, and malnutrition. Knowledge of these relations allows approximate estimates of the health effects of past and future climate change to be made.

Heat waves

Mortality rises in hot weather, especially in elderly people. It is very likely that climate change will be associated with increases in the frequency of heat waves. More than 2000 excess deaths were reported in England and Wales during the major heat wave that affected most of western Europe in 2003 (table 1). The greatest impact on mortality occurred in France, where it was estimated that 14800 excess deaths occurred during the first 3 weeks of August 2003 than would be expected for that time of year. Deaths in Paris increased by 140%. The sustained period of extreme high temperatures (including the minimum temperature), unique in the recorded history of Paris, together with housing designed for cooler summers, caused a major public-health crisis. Much of the excess mortality from heat waves is related to cardiovascular, cerebrovascular, and respiratory causes and is concentrated in elderly people. A proportion of these deaths occur in susceptible people who would probably have died in the near future, but there are likely to be substantial numbers of potentially preventable deaths. In the August 2003 event, the mortality patterns indicate that the contribution of short-term mortality displacement was relatively small.

Urban centres are often particularly affected because of the urban heat island effect, which results in the temperatures being somewhat higher than the surrounding suburban and rural areas. Air pollution concentrations may also rise during heat waves and may contribute to the raised death rates. The recent experience of the heat wave in Europe demonstrated that, even in high-income countries, such events can cause large numbers of deaths in the absence of a coordinated response to ensure that elderly people are kept cool and well hydrated.

The impact of extreme summer heat on human health may be exacerbated by increases in humidity. A central question in estimating future heat-related and cold-related mortality is the rate at which populations will adapt to a warmer climate. Populations are likely to acclimatise to warmer climates via a range of behavioural, physiological, and technological adaptations. The initial physiological acclimatisation to hot environments can occur over a few days, but complete acclimatisation may take several years. The rate at which changes will take place in infrastructure is likely to be much slower.

Floods, droughts, and storms

Natural disasters have a variety of health impacts, ranging from immediate effects of physical injury and morbidity and mortality through to potentially long-lasting effects on mental health. Most flood-related deaths can be attributed to rapid rise floods, due to the increased risk of drowning. In October 1988, a flash flood occurred in the Nîmes region of France. Although the homes of 45000 people were damaged and more than 1100 vehicles destroyed, only nine deaths by drowning (including two people who tried to rescue others) and three severe injuries were reported. In 1996, 86 people died from a flood in the town of Biescas in Spain as a consequence of the stream of water and mud that suddenly covered a campsite located near a channelised river.

Many slow-rise river flood events have also been associated with fatalities. In central Europe, the Meuse, Rhine, Elbe, and Danube rivers have flooded in recent years. In 1997, river floods in central Europe left over 200000 people homeless, and more than 100 people were

Table 1: Excess mortality attributed to the 2003 heat wave in Europe

<table>
<thead>
<tr>
<th>Location (date)</th>
<th>Excess mortality (% increase)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>England and Wales (Aug 4–13)</td>
<td>2091 deaths (17%)</td>
<td>Johnson et al</td>
</tr>
<tr>
<td>Italy (Jun 1–Aug 15)</td>
<td>374 (5%) in all Italian capitals</td>
<td>Conti et al</td>
</tr>
<tr>
<td>France (Aug 1–20)</td>
<td>14802 (60%)</td>
<td>Anon</td>
</tr>
<tr>
<td>Portugal (Aug)</td>
<td>1564 (40%)</td>
<td>Botelho et al</td>
</tr>
<tr>
<td>Spain (Jul–Aug)</td>
<td>41531 deaths (11%)</td>
<td>Simon et al</td>
</tr>
<tr>
<td>Switzerland (Jun–Sept)</td>
<td>975 deaths (6.9%)</td>
<td>Grize et al</td>
</tr>
<tr>
<td>Netherlands (Jun–Sept)</td>
<td>1400–22000 deaths (not reported)</td>
<td>Garssen et al</td>
</tr>
<tr>
<td>Germany (Aug 1–26)</td>
<td>1410 deaths (not reported)</td>
<td>Sozialministerium Baden-Württemberg</td>
</tr>
</tbody>
</table>

Figure 2: Three important research paths with examples of relevant topics

Original figure by A J McMichael (National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australia). Reproduced with permission.
killed. Floods in Dresden, Germany, in 2002 left large parts of the city without power and freshwater for several days. Four of the six main hospitals in Dresden were sited near the river Elbe and affected by the flooding. Over 1300 deaths, approximately 2000 injuries, and more than 1 million displaced people resulted from Hurricane Katrina, which is now the most expensive “natural” disaster in US history.

In some cases flooding may lead to mobilisation of dangerous chemicals from storage or remobilisation of chemicals already in the environment—eg, pesticides. A case study of heavy metal soil contamination after the flooding of the river Meuse during the winter of 1993–94 concluded there was a potential health risk for river-bank inhabitants as a consequence of lead and cadmium contaminations of the flood plain soils. Hazards may be greater when industrial or agricultural land adjoining residential land is affected. However, there is insufficient research on flooding that causes chemical contamination to detect any causal effect on the pattern of morbidity and mortality in the affected populations.

Following floods, increases in diarrhoeal and respiratory diseases are reported in both high-income and low-income countries. Transmission is increased where there is crowding of displaced populations. In industrialised countries, although infections are much less of a problem, the impact on the local economy may still be severe and increases in common mental disorders such as anxiety and depression are common. These increases are probably related to damage to the home environment and economic losses and may persist for more than a year after flooding.

Increased vulnerability of populations in low-income countries may be related to the habituation of high-risk areas such as flood plains and coastal zones, the presence of a limited public-health infrastructure, and the substantial damage to local and national economies, which is proportionally much greater than in industrialised countries. Inevitably, low-income populations are also less likely to be covered by insurance.

Droughts may have wide ranging effects on health including on nutrition, infectious diseases, and on forest fires causing air pollution, particularly in low-income countries. The number of people worldwide affected by drought is influenced strongly by the El Niño cycle.

Infectious diseases

Transmission of many infectious disease agents is sensitive to weather conditions, particularly those spending part of their life cycle outside the human body. Pathogens that are carried by insects are exposed to ambient weather. Vector-borne diseases typically exhibit seasonal patterns in which the role of temperature and rainfall is well documented. Some vector-borne diseases, such as malaria, also display considerable year-to-year variation in some regions that can also be partly explained by climatic factors.

Changes in climate that can affect the transmission of vector-borne infectious diseases include temperature, humidity, altered rainfall, soil moisture, and sea level rise. It is a complex task to determine how these factors may affect the risk of vector-borne diseases. In addition to climatic factors, the incidence and geographic distribution of vector-borne diseases are influenced by many demographic and societal factors. Transmission requires that the reservoir host, a competent vector, and the pathogen be present in an area at the same time, and in adequate numbers to maintain transmission.

Global climate change could cause increases or decreases in the overall incidence of vector-borne diseases, and the duration of the transmission season, in particular sites. Small changes in seasonality may be important, since transmission rates tend to increase non-linearly in relation to the transmission season. Furthermore, increases or decreases in the geographic distribution of disease transmission may occur, since climate-driven changes in vectorial capacity cause transmission to become unsustainable in previously endemic areas, or sustainable in previously non-endemic areas. Even small increases in disease distributions may mean that new populations are exposed. New populations often lack acquired immunity, which can result in more serious clinical disease.

There is now a substantial body of literature on the association between the El Niño cycle, a major determinant of global weather patterns, and some infectious diseases. For example, there is reasonably strong evidence for an association with El Niño and malaria epidemics in parts of south Asia and South America and with cholera in coastal areas of Bangladesh.

The relations between climate and disease distribution and transmission have been investigated for many vector-borne diseases (table 2), including the development of predictive models. Predictive models can be broadly classified as “biological” (based on aggregating the effect of climate on the individual components of the disease transmission cycle) or “statistical” (derived from direct correlations between observed geographic or temporal variations in climate, and associated variations in disease incidence or distribution). Most modelling of the effects of climate change has focused on malaria, but the

<table>
<thead>
<tr>
<th>Vector</th>
<th>Major diseases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mosquitoes</td>
<td>Malaria, filariasis, dengue fever, yellow fever, West Nile fever</td>
</tr>
<tr>
<td>Sandflies</td>
<td>Leishmaniasis</td>
</tr>
<tr>
<td>Triatomines</td>
<td>Chagas disease</td>
</tr>
<tr>
<td>Ixodes ticks</td>
<td>Lyme disease, tick-borne encephalitis</td>
</tr>
<tr>
<td>Tsetse flies</td>
<td>African trypanosomiasis</td>
</tr>
<tr>
<td>Blackflies</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Snails (intermediate host)</td>
<td>Schistosomiasis</td>
</tr>
</tbody>
</table>

Table 2: Examples of vector-borne diseases likely to be sensitive to climate change.
potential impact on the global distribution of dengue has also been estimated. The calibration and validation of global dynamic models is difficult because the underlying systems are never closed. The requisite historical data are not often available with sufficient spatial coverage. The use of assumptions and simplifications potentially decrease the quantitative accuracy of the assessment. Hence, research is now focused on the development of regional models that can allow for validation and adequate prioritisation and estimation of risk.

It is likely that additional populations put at risk by climate change will be in low-income countries, since it is generally assumed that more developed countries, which currently control malaria, will remain able to do so. Malaria in poorer countries is currently only restricted by climate factors in specific arid and highland regions. The ability of these countries to manage any climate-induced increase in malaria will depend on their capacity to develop and sustain malaria control programmes.

The effect of climate change will vary geographically. Malaria transmission may decrease in many areas where decreases in precipitation are projected, particularly around the Amazon and in Central America. The overwhelming majority of the burden of malaria currently occurs in sub-Saharan Africa. Study of the effects of climate changes over much of the past century suggests that areas showing a statistically significant trend towards increasing suitability for malaria are broadly countered by areas showing a decrease. The most detailed study, verified against a large database of historic malaria surveillance data, suggests that climate change will cause a small (5–7%) increase in the population at risk in Africa, mainly through expansion into higher altitudes. The study indicates that climate change will also lengthen the transmission season in many areas, causing a 16–28% increase in the total number of person-months of exposure.

Estimating the global burden of disease due to climate change

WHO has recently undertaken an exercise to estimate the global burden of disease that could be due to climate change.
change in terms of disability adjusted life years (DALYs) lost. This measure makes it possible to take into account impacts that do not necessarily lead to death but cause disability. Climate scenarios are derived from the output of global climate models that are, in turn, driven by scenarios of future greenhouse gas emissions (figure 3). The attributable burden of climate change was estimated in relation to three (future) climate scenarios relative to the baseline climate (ie, the average climate from 1960 to 1991) representing little or no anthropogenic climate change. Epidemiological models were used to estimate the degree to which these climatic changes are likely to affect a limited series of health outcomes (malaria, diarrhoeal disease, malnutrition, flood deaths, direct effects of heat and cold). These measures of proportional change can be applied to projections of the burden of each of these diseases in the future to calculate the possible impacts of climate change on the overall disease burden. The methods have been described more fully elsewhere.4

To generate consistent estimates, the analysis attempted to account for current geographic variation in vulnerability to climate, where not already incorporated into the predictive models. It also attempted to account for future changes in disease rates due to other factors (eg, decreasing rates of infectious diseases due to technological advances or improving socioeconomic status), and for changes in population size and age structure (eg, potentially greater proportion of older people at higher risk of mortality related to cardiovascular disease in response to thermal extremes). These potential future changes can be addressed by applying the estimates of relative risks under alternative climate change scenarios to the global burden of disease projections of disease rates, population size, and age structure. These alternative scenarios attempt to take into account the effects of changing gross domestic product (GDP), “human capital” (as measured by average years of female education), and time (to account for trends such as technological development)4 on the overall “envelope” of cause-specific mortality and morbidity for diseases affected by climate change. The assumptions made about future adaptation and vulnerability are outlined in table 3.

The analyses suggested that climate change will bring some health benefits, such as lower cold-related mortality and greater crop yields in temperate zones, but these benefits will be greatly outweighed by increased rates of other diseases, particularly infectious diseases and malnutrition in developing regions. A small proportional increase in cardiovascular disease mortality attributable to climate extremes is likely in tropical regions, and a small benefit in temperate regions, caused by warmer winter temperatures. Since there is evidence that some temperature-attributable mortality represents small displacements of deaths that would occur soon in any case, no assessment was made of the associated increase or decrease in disease burden. Climate change is estimated to increase the burden of diarrhoea in regions made up mainly of developing countries by approximately 2–5% in 2020. Richer countries (GDP>US$6000/year), either now or in the future, were assumed to suffer little or no additional risk of diarrhoea. Much larger proportional changes are likely in the numbers of people killed in coastal floods (approximately a doubling in the former socialist economies), and inland floods (up to five times greater risk in developed regions). Although the proportional change is much larger than for other health outcomes, the baseline disease burden is much lower, so that the aggregate effect is comparatively small. Substantial proportional changes were estimated in the risk of falciparum malaria in countries at the edge of the current distribution. However, most of the estimated attributable disease burden is associated with small proportional increases in regions that already suffer heavily from malaria, principally through extensions in the altitudinal and latitudinal range in Africa.

On aggregate, it was estimated that climate change may already (by 2000) be causing in the region of 150 000 deaths (0.3% of global deaths per year) and 5·5 million lost DALYs/year (0·4% of global DALYs lost per year).4 Even taking into account increasing wealth and some level of behavioural and socioeconomic adaptation, the disease burden caused by climate change is likely to increase substantially over time. Overall, the effects are predicted to be heavily concentrated in poorer

Table 3: Assumptions on adaptation and vulnerability for each health outcome, as applied in the WHO global burden of disease exercise

<table>
<thead>
<tr>
<th>Biological adaptation affecting relative risks</th>
<th>Socioeconomic adaptation affecting relative risks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct effects of heat and cold</td>
<td>None</td>
</tr>
<tr>
<td>Yes. Temperature associated with lowest mortality was assumed to change directly with temperature increases driven by climate change</td>
<td>Assumed RR=1 if GDP per capita rises above US$6000/year</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>None</td>
</tr>
<tr>
<td>None</td>
<td>Assumed RR=1 if GDP per capita rises above US$6000/year</td>
</tr>
<tr>
<td>Malnutrition</td>
<td>None</td>
</tr>
<tr>
<td>None</td>
<td>Food-trade model assumed future increases in crop yields from technological advances, increased liberalisation of trade, and increased GDP</td>
</tr>
<tr>
<td>Disasters: coastal floods</td>
<td>None</td>
</tr>
<tr>
<td>None</td>
<td>Model assumed the relative risk of deaths in floods decreases with GDP</td>
</tr>
<tr>
<td>Disasters: inland floods and landslides</td>
<td>None</td>
</tr>
<tr>
<td>None</td>
<td>Model assumed the RR of deaths in floods decreases with GDP</td>
</tr>
<tr>
<td>Vector-borne diseases: malaria</td>
<td>None</td>
</tr>
<tr>
<td>None</td>
<td>None (for RR)</td>
</tr>
</tbody>
</table>

GDP=gross domestic product; RR=relative risk *Physiological, immunological, and behavioural.
populations at low latitudes, where the most important climate-sensitive health outcomes (malnutrition, diarrhoea, and malaria) are already common, and where vulnerability to climate effects is greatest. These diseases mainly affect younger age groups, so that the total burden of disease due to climate change appears to be borne mainly by children in developing countries.

Considerable uncertainties surround these estimates and the range of impacts included is not comprehensive. There is, for example, uncertainty over future climate change (particularly future greenhouse gas emissions), uncertainty about climate/health relations, and most importantly, uncertainties around the degree to which current climate/health relations will be modified by socioeconomic adaptation in the future. These uncertainties could be reduced in subsequent studies by (1) applying projections from a range of climate models and/or their probability distributions, (2) relating climate and disease data from a wider range of climatic and socioeconomic environments, (3) more careful validation against patterns in the present or recent past, and (4) more detailed longitudinal studies of the interaction of climatic and non-climatic influences on health.

Climate change and public health

The current state of knowledge about climate change is such that some specific measures for health protection can now be recommended. The summer of 2003 illustrated a lack of public-health capacity in Europe to deal with heat waves. A recent WHO publication illustrated a lack of public-health capacity in Europe to deal with heat waves. A recent WHO publication

<table>
<thead>
<tr>
<th>Health outcome</th>
<th>Public health</th>
<th>Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality and morbidity due to heat waves</td>
<td>Public health education
Heat health warning systems
Emergency preparedness</td>
<td>Enhance health surveillance of routine data for early detection of heat wave effects (eg, monitoring from funeral homes, calls to NHS Direct)</td>
</tr>
<tr>
<td>Floods</td>
<td>Public health education—eg, boil water notices
Emergency preparedness
Check list for post-flood activities</td>
<td>Surveillance for flood effects, with long-term follow-up
Coordinated national surveillance for flood deaths, injuries, and illnesses</td>
</tr>
<tr>
<td>Air quality</td>
<td>Warnings for high pollution days</td>
<td>Daily air pollution measurements</td>
</tr>
<tr>
<td>Vector-borne diseases</td>
<td>Public education, especially to avoid contact with ticks</td>
<td>Monitoring of vectors and reservoir host
Integrated surveillance for human and animal diseases</td>
</tr>
<tr>
<td>Food-borne disease</td>
<td>Maintenance and strengthening of food hygiene measures</td>
<td>Integrated surveillance for human and animal diseases</td>
</tr>
<tr>
<td>Water-borne diseases</td>
<td>Risk assessment for extreme rainfall events
Risk assessment of health effects of algal blooms</td>
<td>Increased microbiological monitoring of public water supplies and private wells, and enhanced surveillance during and following heavy rainfall events</td>
</tr>
</tbody>
</table>

Table 4: Summary of public-health adaptation measures in relation to the health impacts of climate change (applicable to European populations)

Mitigation strategies and health

Climate change poses a major threat to sustainable development because adverse effects are likely to be directed particularly at poor populations that currently also suffer disproportionately from a lack of reliable energy at the level of the household and the community. The easy availability of cheap energy from fossil fuels has underpinned the economic development of industrialised countries and has therefore contributed substantially to the dramatic advances in health observed over the past century or so. With current energy sources, recent and continuing patterns of economic development contribute more to climate change than population growth. For example, to keep the concentration of carbon dioxide from exceeding the pre-industrial concentration of 275 parts per million, reductions of more than two-thirds in emissions would be needed, assuming a population of 9 billion by 2050. The industrialised nations, which have benefited so much from fossil fuels, should take the lead...
and their proportional reductions will need to be much greater than the less developed nations to converge on a much lower level and more equal distribution of emissions.

Approximately 2 billion people lack access to electricity and suffer substantial ill health as a result. Around half the global population cook daily with traditional biomass fuels (eg, dung, crop residues, wood, and charcoal), resulting in exposure to very high concentrations of air pollutants indoors and extensive time spent in collection of wood or other fuel and the attendant opportunity costs, particularly for women. Improved energy efficiency cook stoves are becoming increasingly available in a number of countries and can substantially cut the use of biomass fuels with subsequent health, environmental, and economic benefits.33 These populations would also obviously benefit from access to affordable electricity.

A WHO publication has demonstrated the potential near-term benefits to health of strategies to reduce greenhouse gas emissions applied in China.32 The authors concluded that the benefits to human health arising from changes in energy use in the housing sector are many times larger than those in the electric power sector. Economic benefits of reducing exposure to indoor air pollution were thought to be substantially larger than the cost of reducing greenhouse gas emissions, particularly when this was achieved by improving energy efficiency.

Fossil fuel combustion is a cause of both local air pollutants (especially particulates, ozone, methane, nitrogen oxides, and sulphur dioxide) and greenhouse gases. Policies that aim to address global anthropogenic climate change can therefore also benefit health in the near term by reducing the concentration of urban air pollutants. A recent paper demonstrates the potential benefits of converting all US on-road vehicles to hydrogen fuel-cell vehicles.31 Such vehicles powered by hydrogen from renewable energy sources (eg, wind power) could save 3700–6400 lives annually from reduced air pollution as well as benefiting climate change. “Ancillary benefits” are the monetised secondary (or side) benefits of mitigation policies on problems such as reductions in local air pollution associated with the reduction of fossil fuels. Multiple, wider health ancillary benefits of mitigation are possible by improving transport policies in both developed and developing countries. Transport is projected to have the fastest proportional growth in greenhouse gas emissions of any sector from 1990–2020, and there are direct connections with urban air pollution (around 800 000 deaths per year globally), road traffic accidents (1·2 million deaths per year), and physical inactivity (1·9 million deaths a year).32 There are therefore potentially major synergies in terms of reduced greenhouse gas emissions and direct health benefits from sustainable transport systems that make more use of public transport, walking, and cycling, especially in rapidly developing countries such as China and India. Sources of renewable energy such as photovoltaic, solar thermal, wave, and wind power do not appear to have any important adverse effects on health and their overall impacts are likely to be overwhelmingly beneficial.34 The barriers to their uptake relate particularly to the cost of electricity generated in these ways. However, there is substantial evidence that dams for the generation of hydropower may have adverse effects, for example, by affecting the distribution of vector-borne diseases and displacing populations.35,36 The health impact assessment of dams is therefore an important aspect of the planning process. The assessment of the impacts of the expansion of nuclear power is complex and beyond the scope of this article. Increasing costs and concerns about the security of fossil fuels provide added impetus to seek alternatives.

Conclusions

The effects of climate change on health are likely to be predominately negative and impact most heavily on low-income countries where capacity to adapt is weakest, but also on the most vulnerable groups in developed countries. Adaptation strategies should blunt some of the adverse impacts but will pose difficulties of implementation, particularly in low-income countries. With climate change already underway, there is a need to assess vulnerabilities and identify cost-effective intervention/adaptation options in the health sector and in other sectors that have direct links to human health. Early planning can help reduce future adverse health impacts and mitigation strategies—eg, using a number of renewable energy sources—can improve health by reducing air pollution as well as addressing climate change.

Conflict of interest statement

AH is a reviewer and RSK a participant in the UN Intergovernmental Panel on Climate Change for the Fourth Assessment Report. DC-L and CC declare that they have no conflict of interest.

Acknowledgments

This article is based on a paper presented to the World Climate Change Conference (Moscow, Russian Federation, Sept 29–Oct 3, 2003), which has been updated for the 2005 Harben Lecture of the Royal Institute of Public Health. We thank Tony McMichael for permission to use figure 2 and acknowledge the contributions of many scientists to the Comparative quantification of health risks: global and regional burden of disease due to selected major risk factors report. The views expressed in this article are those of the authors and do not necessarily reflect the position of the WHO.

References

46 Menne B, Ehl KL, eds. Climate change and adaptation strategies for human health Hessen, Germany. Dr Dietrich Steinkopff Verlag GmbH & Co. KG, 2005.

